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Abstract
Using seismic data to constrain not only the strength of
anisotropy, but the orientation of the best-fitting symmetry
axis is important for geodynamic understanding, as this can
be related to mantle convection flow patterns. Surface wave
models, though, often only deal with anisotropy with a vertical
axis of symmetry.  Conversely, SKS splitting measurements
have typically been modeled assuming a horizontal axis of
symmetry for the material properties.  Recently, however,
methods have been developed for using splitting
measurements in tomographic inversions for more general
symmetry axis orientations (e.g. Chevrot 2006; Abt and
Fischer 2007).  There have also been surface wave studies
which model azimuthal dependence of Rayleigh wave
velocity through linearized dependence on a horizontal fast
axis (e.g. Simons et al. 2002). As the frequency content of
body wave splitting measurements and surface wave
observations differ greatly, it is essential to have an
appropriate finite frequency theory in order to include both in
a consistent framework.  We derive here nonlinear
expressions for 3D finite-frequency surface wave sensitivity
to arbitrarily oriented hexagonal symmetric media. We also
discuss practical means of inverting for such a model,
including combination with the compatible approach of shear
wave splitting tomography proposed by Chevrot (2006).
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Figure1: Calculated finite strain ellipses for a flow
field in the South American subduction zone (from
Becker et al., 2003)

Anisotropic mantle velocity models, if
sufficiently resolved, can be directly related
to mantle convective flow patterns.
Theoretical studies of predicted anisotropy
due to mantle flow based on kinematic
theory (e.g. Becker et al., 2006) suggest that
at least upper mantle anisotropy may be well
modeled using an anisotropic material with
hexagonal symmetry, with the fast axis
oriented roughly parallel with the long axis of
the finite strain ellipse. Detailed anisotropic
modeling may be compared with mantle flow
calculations (e.g. figure 1) in order to better
constrain the dynamics of the mantle.  It is
valuable then to attempt to directly resolve
both strength and orientation of anisotropy.

We wish to develop the surface wave sensitivity to an arbitrarily oriented hexagonal
medium, as defined by Chevrot (2006)

Figure 2:
Representation of
hexagonal symmetry
with axis specified by s.^

We define the Green tensor of a surface wave at a specific frequency as

where p is a polarization vector and P is a propagation term

Figure 3: Cartoon depicting
geometry of source, receiver
and scattering point.

With that, we can define the first order Born
approximation to the perturbed Green tensor as an
integral over scattering points

and putting in the surface wave Green tensor, we
get

The interaction coefficient matrix is defined by

This can be modified for an expression for a perturbed moment tensor response
using the S and R terms from Zhou et al. (2004) to

Figure 4: Contributions of different coupling of Rayleigh (R) and Love (L) to µ
kernels (top) and kernels for γ (bottom) for a long period fundamental Rayleigh wave
(left), fundamental Love wave (middle) and Love overtones (right).  All slices are at
200 km depth, and data is filtered between 250 and 1000 seconds.

We show examples of waveform kernels calculated for long period surface
waves with the same source-receiver configuration (figure 4).   For greater
physical intuition of the significance of the geographic patterns, we also
show the components of the kernel due to coupling of fundamental and
higher Rayleigh modes (RR), Rayleigh to Love (RL) and Love to Rayleigh
conversions (LR), and coupling between fundamental and higher Love
modes (LL).  While relatively simple kernels emerge for µ during both the
Rayleigh and Love fundamental modes, as well as the shear velocity
anisotropic parameter γ in the fundamental Rayleigh wave, greater
complexity and importance of mode conversions can be seen in the other
kernels.  These kernels are calculated for an initial model with a vertical
axis of symmetry.

Figure 5: Effects of different initial axis
orientation on Rayleigh (top) and Love
(bottom) γ kernels.  In each the top panel
is the vertical axis kernel, while the lower
panels show 45° tilt (middle) and
horizontal axes (bottom), towards the SW
(left), S (center), and SE (right).

Because the elements of Ω for the
anisotropic parameters ε, δ, and γ
depend on the orientation of the
symmetry axis in the starting model
(figure 5), the problem is non-linear.
We can define the kernels for
perturbations to the orientation
angles for an iterative inversion as

The parameterization chosen in this study is ideal
for reducing the number of anisotropic parameters
in a physically meaningful way.  Both theoretical
predictions (Becker et al. 2006) and observations
of upper mantle xenoliths (Montagner and
Anderson 1989) suggest that the 3 anisotropic
parameters are highly correlated, and can then be
scaled in an inversion.   P and S perturbations
can also be scaled, meaning we need only one
isotropic and one anisotropic parameter, plus the
two orientation angles.

Other parameterizations of general anisotropy
(e.g. Montagner and Nataf 1986) are less suited
to reducing the number of parameters, and
numerical studies show that surface waves can
be sensitive to many parameters (Sieminski et al
2007).  Further study, however, is necessary to
determine the best strategy for handling the non-
linearity of the inversion for this parameterization.

This parameterization is
also the same proposed
in Chevrot (2006) for the
inversion of SKS splitting
intensity data using finite
frequency kernels (figure
6).  This suggests a
potentially powerful joint
inversion of these two
complementary datasets
in a consistent theoretical
framework.

Figure 6: Example of a
finite frequency SKS
splitting intensity kernel
(from Favier and
Chevrot 2003)
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where the elastic properties are described by perturbations to
the isotropic Lame parameters, λ and µ, and the three
anisotropic parameters ε, δ, and γ (Mensch and
Rasolofosaon 1997), defined by elements of a Voigt matrix
relative to the symmetry axis s (figure 2) as^

where the ´ and ˝ refer to the incoming and
outgoing wave respectively at the scattering point
(figure 3).  Each element of this matrix represents
a coupling between modes defined by their
eigenvectors and the orientation of the axis s.  ^  


