
June 19, 2008 10:26 Geophysical Journal International gji˙3833

Geophys. J. Int. (2008) doi: 10.1111/j.1365-246X.2008.03833.x

G
JI

S
ei

sm
ol

og
y

Surface wave tomography for azimuthal anisotropy in a strongly
reduced parameter space

Mark P. Panning1 and Guust Nolet1,2

1Department of Geosciences, Princeton University, Princeton, NJ 08544, USA. E-mail: mpanning@princeton.edu
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S U M M A R Y
Large scale seismic anisotropy in the Earth’s mantle is likely dynamically supported by the
mantle’s deformation; therefore, tomographic imaging of 3-D anisotropic mantle seismic ve-
locity structure is an important tool to understand the dynamics of the mantle. While many
previous studies have focused on special cases of symmetry of the elastic properties, it would
be desirable for evaluation of dynamic models to allow more general axis orientation. In this
study, we derive 3-D finite-frequency surface wave sensitivity kernels based on the Born ap-
proximation using a general expression for a hexagonal medium with an arbitrarily oriented
symmetry axis. This results in kernels for two isotropic elastic coefficients, three coefficients
that define the strength of anisotropy, and two angles that define the symmetry axis. The par-
ticular parametrization is chosen to allow for a physically meaningful method for reducing the
number of parameters considered in an inversion, while allowing for straightforward integration
with existing approaches for modelling body wave splitting intensity measurements. Example
kernels calculated with this method reveal physical interpretations of how surface waveforms
are affected by 3-D velocity perturbations, while also demonstrating the non-linearity of the
problem as a function of symmetry axis orientation. The expressions are numerically validated
using the spectral element method. While challenges remain in determining the best inversion
scheme to appropriately handle the non-linearity, the approach derived here has great promise
in allowing large scale models with resolution of both the strength and orientation of anisotropy.

Key words: Inverse theory; Surface waves and free oscillations; Seismic anisotropy; Seismic
tomography; Theoretical seismology; Wave scattering and diffraction.

1 I N T RO D U C T I O N

Global tomographic modelling of the 3-D seismic velocity structure of the mantle is an important tool to allow us to image the dynamic

processes of the Earth. Most tomographic models to date have modelled the isotropic P and/or S velocity. Under the assumption of relative

chemical heterogeneity, these can be well interpreted as a snapshot of the current thermal state of the mantle. These thermal differences can

then be interpreted as the driving force through thermal expansion for the dynamic processes of the mantle. The good agreement of isotropic

structure at long wavelengths of many recent S velocity models (Grand 1997; Masters et al. 2000; Mégnin & Romanowicz 2000; Ritsema

& van Heijst 2000; Gu et al. 2003) is a constraint on the current long-wavelength thermal structure in the mantle, while some finer scale

isotropic P velocity models have imaged both cold, descending slabs (e.g. van der Hilst et al. 1997; Li et al. 2006) and hot, upwelling plumes

(Montelli et al. 2004, 2006).

Such isotropic modelling has only an indirect connection to dynamics through the assumption that velocity heterogeneity can be explained

primarily by thermal heterogeneity and can, therefore, be related to the flow-driving density contrasts through thermal expansion. Considering

the anisotropy of seismic velocity, however, may allow for a more direct connection to the dynamic flow of the mantle. On a microscopic scale,

most minerals that make up the Earth’s mantle are elastically anisotropic, but random orientations of these crystals leads to isotropy on the

scale of seismic wavelengths. The dynamic deformation processes of the mantle can produce seismically observable anisotropy either through

preferentially aligning the crystalline axes (lattice preferred orientation or LPO) (e.g. Karato 1998) or alignment of materials with strongly

contrasting elastic properties (shape preferred orientation or SPO) (e.g. Kendall & Silver 1996). In the relatively cold lithosphere, such signa-

tures may be frozen in over geological timescales (Silver 1996), but they likely require dynamic support at greater depths (Vinnik et al. 1992).

This requirement of dynamic support suggests that observed seismic anisotropy, if sufficiently resolved, has the potential to serve as a

direct proxy to the dynamic mantle flow field, although we require further information to understand how to relate flow to seismic anisotropy.

Theoretical studies of predicted anisotropy due to mantle flow based on kinematic theory (e.g. Becker et al. 2003, 2006, 2008) suggest that at
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least upper-mantle anisotropy may be well modelled using an anisotropic material with hexagonal symmetry, with the fast axis oriented roughly

parallel with the long axis of the finite strain ellipse. Detailed anisotropic modelling could then be compared with mantle flow calculations in

order to better constrain the dynamics of the mantle. It is valuable then to attempt to directly resolve both strength and orientation of anisotropy.

There are already several available models of seismic anisotropy. Models of seismic anisotropy based on surface waves, though, often

only deal with anisotropy with a vertical axis of symmetry (radial anisotropy) (e.g. Ekström & Dziewonski 1998; Beghein & Trampert

2004; Panning & Romanowicz 2006; Kustowski et al. 2008). Conversely, body wave studies such as SKS splitting measurements have

typically been modelled assuming a horizontal axis of symmetry for the material properties (e.g. Vinnik et al. 1992; Fouch & Fischer 1996;

Silver 1996). Recently, however, methods have been developed for using splitting measurements in tomographic inversions for more general

symmetry axis orientations (Chevrot 2006; Abt & Fischer 2008; Long et al. 2008). There have also been surface wave studies which model

azimuthal dependence, in particular, of fundamental mode Rayleigh wave velocity through linearized dependence on a horizontal fast axis

(e.g. Montagner & Tanimoto 1991; Simons et al. 2002; Debayle et al. 2005).

In general, allowing for arbitrary symmetry axis orientation and anisotropic strength would lead to 21 independent elastic coefficients,

which is a very large number for use in an inverse approach. In order to best use surface wave measurements to constrain the strength and

anisotropy through a stable inversion process, we require a method that allows for a reasonable way to reduce the number of parameters for

which we invert. An important method for modelling surface wave sensitivity to anisotropic structure through 13 ‘natural’ linear combinations

of the elastic constants (Montagner & Nataf 1986; Montagner & Jobert 1988) has been proposed, and arguments based on the relative sensitivity

to these different parameters and the expected amplitudes of these parameters in the Earth have led to inversions for a smaller subset of these

parameters (e.g. Montagner & Tanimoto 1991; Simons et al. 2002). However, recent numerical studies (Sieminski et al. 2007a) suggest

that Rayleigh waves may exhibit significant sensitivity to a large number of these parameters. Additionally, if combination with body wave

measurements is desired, such phases exhibit sensitivity to a different subset of linear combinations of elastic parameters (Sieminski et al.
2007b). In order to have a physically meaningful method to reduce the number of parameters, it is advantageous to consider a parametrization

explicitly based upon an arbitrarily oriented hexagonal medium (Chevrot 2006), which has five elastic parameters plus two orientation angles

to describe the symmetry axis. Additional reduction in parameters can then be obtained as both theoretical studies of material deformation due

to mantle convection (Becker et al. 2006) and observations of mantle xenoliths (Montagner & Anderson 1989) suggest significant correlation

between different elastic parameters.

In order to maximize the resolution of an anisotropic model, we would also like to combine surface wave and shear wave splitting

measurements (e.g. Marone & Romanowicz 2007). Such data sets are complementary in the sense that the surface wave measurements have

the potential for excellent depth resolution, while the shear wave splitting measurements allow for greater lateral resolution and determination

of the orientation of the fast axis in the horizontal plane. Since such measurements are made in very different frequency bands, though,

combination of these data sets could be greatly aided by the use of kernels calculated using finite-frequency theory (e.g. Dahlen et al. 2000;

Zhao et al. 2000; Zhou et al. 2004).

In this paper, we derive 3-D finite-frequency kernels for surface waveforms based on the Born approximation with a model parametrized

by an arbitrarily oriented hexagonal symmetry (Chevrot 2006). Such an approach allows for a physically meaningful way to reduce the number

of anisotropic model parameters, as well as providing a complementary approach to invert surface wave data in combination with SKS splitting

intensity measurements (Chevrot 2006; Long et al. 2008) in a consistent theoretical framework. Such an approach is, however, non-linear and

we suggest some possible approaches to deal with such non-linearity.

2 S U R FA C E WAV E S E N S I T I V I T Y T O A N I S O T RO P I C S T RU C T U R E

Chevrot (2006) gives the following coordinate-free expression of the perturbed elastic stiffness tensor for an anisotropic perturbation with

hexagonal symmetry:

δc jmnk = δλδ jmδnk + δμ(δ jnδmk + δ jkδmn)

+ 2ρα2ε(ŝ j ŝm ŝn ŝk − δ jm ŝn ŝk − δnk ŝ j ŝm)

+ ρα2δ(δ jm ŝn ŝk + δnk ŝ j ŝm − 2ŝ j ŝm ŝn ŝk)

+ 2ρβ2γ (2δ jm ŝn ŝk + 2δnk ŝ j ŝm − δ jk ŝm ŝn − δmnŝ j ŝk − δmk ŝ j ŝn − δ jn ŝm ŝk), (1)

where ŝ is the unit vector describing the orientation of the symmetry axis, λ and μ are the Lamé parameters of the reference isotropic medium,

and ε, δ and γ are based on an extension of the Thomsen parameters widely in use in the seismic exploration literature (Thomsen 1986;

Mensch & Rasolofosaon 1997). While the above expression is true for arbitrary orientation of the symmetry axis, it is convenient to define

the the parameters δλ, δμ, ε, δ and γ with respect to a locally defined coordinate system where the x3 axis is defined to be along the axis of

symmetry. We can then define

ε = (C11 − C33)/2(λ + 2μ) (2)

δ = (C13 − C33 + 2C44)/(λ + 2μ) (3)

γ = (C66 − C44)/2μ (4)

δλ = C11 − 2C66 − λ (5)
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δμ = C66 − μ, (6)

where the C IJ represent elements of the Voigt matrix (see Appendix A) in the locally defined coordinate system. We should also note here

that the form of eq. (1) specifically results from the parametrization choices in eqs (2)–(6). If, for example, δμ were instead defined relative

to C44, a different form of eq. (1) would result.

Although these anisotropic and isotropic perturbation terms are defined with respect to a specific choice of coordinate system relative to

the symmetry axis, it is important to note that eq. (1) is correct for arbitrary axis orientation. The coordinate system used to define ε, δ and γ

as above need only be defined locally.

We shall wish to develop scattering coefficients for ε, δ and γ . We adopt the normalization and Fourier sign convention of Zhou et al.
(2004), who write the Green’s function for surface waves as:

Grs = pr p ∗
s P(θ ), (7)

where r denotes receiver, s the source, p is the polarization vector:

p = U (r )r̂ − iV (r )θ̂ + iW (r )φ̂, (8)

where r̂ is the radial unit vector, θ̂ is the unit vector on the surface of the sphere along the great-circle path in the direction of propagation,

and φ̂ = r̂ × θ̂. P(θ ) describes the propagation effect over a path of length θ radians,

P(θ ) = e−i(νθ+π/4−nπ/2)

|8πν sin θ | 1
2

, (9)

for ν = � + 1
2

and Maslov index n. If we choose our coordinate system such that the earthquake is at the pole θ = 0, then θ is the spherical

colatitude. We adopt this system, with φ as the longitudinal coordinate.

The first order (Born) approximation to the wave generated by a unit force in the l-direction at s is:

δGrs
il = −

∫
∂m Gr x

i j δc jmnk∂n Gxs
kl d�x. (10)

We need the gradients of the Green’s tensor:

∂m Gr x
i j = ∂m

[
p′′∗

x j pri P(θ ′′)
]

(11)

∂n Gxs
kl = ∂n

[
p∗

sl p′
xk P(θ ′)

]
, (12)

where a single prime denotes the incoming wave at x, and a double prime the outgoing wave. We can evaluate the derivatives in (11) and (12)

with the expressions

∂m P(θ ′′) = iν ′′r−1 P(θ ′′)θ̂ ′′
m (13)

∂n P(θ ′) = −iν ′r−1 P(θ ′)θ̂ ′
n (14)

∂m p′′∗
x j = r̂m(r̂ j U̇

′′ + i θ̂ ′′
j V̇ ′′ − i φ̂′′

j Ẇ ′′) (15)

∂n p′
xk = r̂n(r̂kU̇ ′ − i θ̂ ′

k V̇ ′ + i φ̂′
k Ẇ ′). (16)

The unit vectors in expressions (15) and (16) are defined such that θ̂
′
is the unit vector pointing along the azimuth of the incoming wave

at a scattering point in the Born integral (eq. 10), and θ̂
′′

is a unit vector along the azimuth of the outgoing wave (Fig. 1). φ̂
′
and φ̂

′′
are then

defined as the cross-products r̂ × θ̂
′
and r̂ × θ̂

′′
. We note that since we are considering surface waves in expressions (11) and (12), we neglect

terms like ∂m θ̂ arising from the covariance of the unit vectors on the surface of the sphere which are proportional to r−1, as they will be small

in comparison to the terms which also include the wavenumber ν, which is assumed large for the domain relevant for surface waves (Snieder

& Nolet 1987). A full derivation including these covariant terms can be accommodated using a derivation based on surface wave strain tensors

(e.g. Dahlen & Tromp 1998, expression 11.39). This can be seen in the supplementary online material for this paper, but the expressions are

more complicated, and the simpler expressions derived here give excellent results when numerically validated (Section 3.2).

With that, the ith component of the scattered signal is, due to a unit force in the L-direction:

δui = δGrs
il = −

∫
pri P(θ ′′)P(θ ′)p∗

sl�d�x, (17)

with the scattering coefficient

� = [∂m p′′∗
x j + iν ′′r−1θ̂ ′′

m p′′∗
x j ][∂n p′

xk − iν ′r−1θ̂ ′
n p′

xk]δc jmnk

= OmjInkδc jmnk, (18)

where we define the factors for outgoing and incoming waves:

Omj = r̂m(r̂ j U̇
′′ + i θ̂ ′′

j V̇ ′′ − i φ̂′′
j Ẇ ′′) + iν ′′r−1θ̂ ′′

m(r̂ j U
′′ + i θ̂ ′′

J V ′′ − i φ̂′′
J W ′′) (19)

Ink = r̂n(r̂kU̇ ′ − i θ̂ ′
k V̇ ′ + i φ̂′

k Ẇ ′) − iν ′r−1θ̂ ′
n(r̂kU ′ − i θ̂ ′

k V ′ + i φ̂′
k W ′). (20)
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Figure 1. Diagram demonstrating the geometry of the source (asterisk), receiver (triangle) and scattering point (square) as points projected on the surface of

a unit sphere. Solid lines indicate great-circle paths, and dashed lines are lines of longitude. The unit vectors θ̂ ′ and θ̂ ′′ are shown. At the source, the mode

take-off angle σ ′ is shown, and at the receiver, the azimuths of the radial component, ξ , and of the mode arriving from the scattering point, ξ ′′, are shown. In

the inset, the azimuths ψ ′ and ψ ′′ as well as the scattering angle η = ψ ′′ − ψ ′.

Following the derivation in Zhou et al. (2004), we can use the Green’s tensor expression to calculate the moment tensor response, which

can be written as an implied mode sum,

u = S × P(θ ) × R, (21)

where S is defined in eq. (2.22) of Zhou et al. (2004), and is a function of the moment tensor elements, source take-off angle, and ps , and

R = pr · v̂, where v̂ is the unit vector describing the polarization of the seismometer at the receiver.

Similarly, the expression in eq. (17) can be used to calculate the perturbed moment tensor response,

δu = −
∫

S ′R′′ P(θ ′′)P(θ ′)� d�x, (22)

where S ′ is S evaluated for the incoming mode at take-off angle appropriate for the scattering point, and R′′ is defined as in Zhou et al. (2004)

eq. (2.31), and accounts for the polarization of the outgoing mode at the receiver location with a sign difference due to the sign convention

used for �. Correcting some typographical errors from Zhou et al. (2004) eq. (2.22), we write

S ′ = −iω−1

[
Mrr U̇ ′

s + (Mθθ + Mφφ)r−1
s

(
U ′

s − 1

2
ν ′V ′

s

)]
+ ω−1(−1)n

(
V̇ ′

s − r−1
s V ′

s + ν ′r−1
s U ′

s

)(
Mrφ sin σ ′ + Mrθ cos σ ′)

+ iω−1ν ′r−1
s V ′

s

[
Mθφ sin 2σ ′ + 1

2
(Mθθ − Mφφ) cos 2σ ′

]
+ ω−1(−1)n

(
Ẇ ′

s − r−1
s W ′

s

)(
Mrθ sin σ ′ − Mrφ cos σ ′)

+ iω−1ν ′r−1
s W ′

s

[
1

2
(Mθθ − Mφφ) sin 2σ ′ − Mθφ cos 2σ ′

]
,

(23)

where M rr , M θθ , M φφ , M rθ , M rφ and M θφ are the six independent elements of the moment tensor, r s is the source radius, the s subscript on

radial eigenfunctions means that they are evaluated at the source radius, σ ′ is the azimuth from south of the outgoing mode (Fig. 1), and ω is

the angular frequency. This is defined for the displacement response but can be converted by multiplying a factor of iω for velocity or −ω2

for acceleration.

The receiver polarization term can be written as

R′′ =

⎧⎪⎪⎨⎪⎪⎩
U ′′

r vertical component

−iV ′′
r cos(ξ ′′ − ξ ) − iW ′′

r sin(ξ ′′ − ξ ) radial component

iW ′′
r cos(ξ ′′ − ξ ) − iV ′′

r sin(ξ ′′ − ξ ) transverse component,

(24)

where ξ ′′ is the azimuth of the incoming scattered mode, and ξ is the azimuth of the radial component (Fig. 1).
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For a parameter X , which in this parametrization can be δλ, δμ, ε, δ or γ , we can define the kernel as

K X (�x) = −S ′R′′ P(θ ′′)P(θ ′)�X (�x), (25)

where �x is a position vector. In this expression, we have used the notation � = �XδX , where δX is the perturbation to the elastic tensor

contributed by a perturbation of parameter X . Similarly, once a model parametrization basis is decided, we can define the partial derivatives

for use in an inversion as

∂ui

∂mh
=

∫
K X (�x) fh(�x) d�x, (26)

where f h is a model basis function.

Explicit expressions of the interaction coefficients �X are given in Table 1. A detailed derivation of each coefficient is provided in the

Table 1. Non-zero interaction coefficients for surface waves for perturbations to δλ, δμ, ε, δ and γ .

�δλ:

Rayleigh → Rayleigh U̇ ′′U̇ ′ − r−1(ν′U̇ ′′V ′ + ν′′V ′′U̇ ′) + ν′′ν′r−2V ′′V ′

�δμ:

Rayleigh → Rayleigh 2U̇ ′′U̇ ′ + cos ηr−1(ν′V̇ ′′U ′ + ν′′U ′′V̇ ′) + cos ηV̇ ′′V̇ ′

+ ν′′ν′r−2[cos ηU ′′U ′ + 2 cos2 ηV ′′V ′]
Rayleigh → Love sin η[ν′r−1Ẇ ′′U ′ + Ẇ ′′V̇ ′ + 2ν′′ν′r−2 cos ηW ′′V ′]
Love → Rayleigh − sin η[ν′′r−1U ′′Ẇ ′ + V̇ ′′Ẇ ′ + 2ν′′ν′r−2 cos ηV ′′W ′]
Love → Love cos ηẆ ′′Ẇ ′ + ν′′ν′r−2 cos(2η)W ′′W ′

�ε = 2ρα2 (�
(1)
ε + �

(2)
ε + �

(3)
ε )

For �
(1)
ε :

Rayleigh → Rayleigh s2
r Ȧ′′ Ȧ′ + isr r−1[s′′

θ ν′′A′′ Ȧ′ − s′
θ ν

′ Ȧ′′A′]
+ ν′′ν′r−2s′

θ s′′
θ A′′ A′

Rayleigh → Love −is2
r s′′

φ Ȧ′Ẇ ′′ + sr r−1[s′′
θ s′′

φν′′ Ȧ′W ′′ − s′
θ s′′

φν′A′Ẇ ′′]
− iν′′ν′r−2s′′

θ s′
θ s′′

φ A′W ′′

Love → Rayleigh is2
r sφ ′Ẇ ′ Ȧ′′ + sr sφ ′r−1[s′

θ ν
′W ′ Ȧ′′ − s′′

θ ν′′Ẇ ′ A′′]
+ iν′′ν′r−2s′

θ sφ
′s′′

θ W ′ A′′

Love → Love s2
r sφ ′s′′

φ Ẇ ′Ẇ ′′ + isr sφ ′s′′
φr−1[s′′

θ ν′′Ẇ ′W ′′ − s′
θ ν

′W ′Ẇ ′′]
+ ν′′ν′r−2sφ

′s′′
φs′

θ s′′
θ W ′W ′′

For �
(2)
ε :

Rayleigh → Rayleigh −(U̇ ′′ − ν′′r−1V ′′)
(

sr Ȧ′ − iν′r−1s′
θ A′

)
Love → Rayleigh −(U̇ ′′ − ν′′r−1V ′′)(is′

φsr Ẇ ′ + ν′r−1s′
θ s′

φ W ′)

For �
(3)
ε :

Rayleigh → Rayleigh −(U̇ ′ − ν′r−1V ′)
(

sr Ȧ′′ + iν′′r−1s′′
θ A′′)

Rayleigh → Love −(U̇ ′ − ν′r−1V ′)(−is′′
φsr Ẇ ′′ + ν′′r−1s′′

φs′′
θ W ′′)

�δ = 2ρα2
(
�

(1)
δ + �

(2)
δ + �

(3)
δ

)
�

(1)
δ = − 1

2
�(2)

ε

�
(2)
δ = − 1

2
�(3)

ε

�
(3)
δ = − �

(1)
ε

�γ = −2ρβ2
∑6

i=1 �
(i)
γ

�
(1)
γ = 2 �

(2)
ε

�
(2)
γ = 2 �

(3)
ε

For �
(3)
γ :

Rayleigh → Rayleigh s2
r [U̇ ′′U̇ ′ + cos ηV̇ ′′V̇ ′] − iν′r−1sr s′

θ [U̇ ′′U ′ + V̇ ′′V ′ cos η]

+iν′′r−1sr s′′
θ [U ′′U̇ ′ + V ′′V̇ ′ cos η]

+ν′′ ν′ r−2s′
θ s′′

θ [U ′′ U ′ + V ′′ V ′ cos η]

Rayleigh → Love sin η[s2
r Ẇ ′′V̇ ′ − iν′r−1sr s′

θ Ẇ ′′V ′ + iν′′r−1sr s′′
θ W ′′V̇ ′

+ ν′′ ν′ r−2s′
θ s′′

θ W ′′ V ′]
Love → Rayleigh − sin η[s2

r V̇ ′′Ẇ ′ − iν′r−1sr s′
θ V̇ ′′W ′ + iν′′r−1sr s′′

θ V ′′Ẇ ′

+ν′′ ν′ r−2s′
θ s′′

θ V ′′ W ′]
Love → Love cos η[s2

r Ẇ ′′Ẇ ′ − iν′r−1sr s′
θ Ẇ ′′W ′ + iν′′r−1sr s′′

θ W ′′Ẇ ′

+ ν′′ ν′ r−2s′
θ s′′

θ W ′′ W ′]

C© 2008 The Authors, GJI

Journal compilation C© 2008 RAS



June 19, 2008 10:26 Geophysical Journal International gji˙3833

6 M. P. Panning and G. Nolet

Table 1. (Continued.)

For �
(4)
γ :

Rayleigh → Rayleigh s2
r [U̇ ′′U̇ ′ + ν′′ν′r−2 cos ηU ′′U ′] − isr s′

θ [U̇ ′′V̇ ′ + ν′′ν′r−2 cos ηU ′′V ′]
+ s′

θ s′′
θ [V̇ ′′V̇ ′ + ν′′ν′r−2 cos ηV ′′V ′]

+ isr s′′
θ [V̇ ′′U̇ ′ + ν′′ν′r−2 cos ηV ′′U ′]

Rayleigh → Love − s′′
φs′

θ [Ẇ ′′V̇ ′ + ν′′ν′r−2 cos ηW ′′V ′]
− is′′

φsr [Ẇ ′′U̇ ′ + ν′′ν′r−2 cos ηW ′′U ′]
Love → Rayleigh isr s′′

φ [][U̇ ′′Ẇ ′ + ν′′ν′r−2 cos ηU ′′W ′]
− s′′

θ s′′
φ [][V̇ ′′Ẇ ′ + ν′′ν′r−2 cos ηV ′′W ′]

Love → Love s′′
φs′′

φ [][Ẇ ′′Ẇ ′ + ν′′ν′r−2 cos ηW ′′W ′]

For �
(5)
γ :

Rayleigh → Rayleigh s2
r [U̇ ′′U̇ ′ + ν′′r−1 cos ηU ′′V̇ ′]

− iν′r−1sr s′
θ [U̇ ′′U ′ + ν′′r−1 cos ηU ′′V ′]

+ isr s′′
θ [V̇ ′′U̇ ′ + ν′′r−1 cos ηV ′′V̇ ′]

+ ν′r−1s′′
θ s′

θ [V̇ ′′U ′ + ν′′r−1 cos ηV ′′V ′]
Rayleigh → Love − is′′

φsr Ẇ ′′U̇ ′ − iν′′r−1s′′
φsr cos ηW ′′V̇ ′

− ν′r−1s′′
φs′

θ (Ẇ ′′U ′ + ν′′r−1 cos ηW ′′V ′)
Love → Rayleigh − iν′′r−1sr s′′

θ sin ηV ′′Ẇ ′ + iν′′ν′r−2sr s′
θ sin ηU ′′W ′

− ν′′ν′r−2s′
θ s′′

θ sin ηV ′′W ′ − ν′′r−1s2
r sin ηU ′′Ẇ ′

Love → Love iν′′r−1s′′
φsr sin ηW ′′Ẇ ′ + ν′′ν′r−2s′

θ s′′
φ sin ηW ′′W ′

For �
(6)
γ :

Rayleigh → Rayleigh s2
r [U̇ ′′U̇ ′ + ν′′r−1 cos ηU ′′V̇ ′]
−iν′r−1sr s′

θ [U̇ ′′U ′ + ν′′r−1 cos ηU ′′V ′]
+isr s′′

θ [V̇ ′′U̇ ′ + ν′′r−1 cos ηV ′′V̇ ′]
+ν′r−1s′′

θ s′
θ [V̇ ′′U ′ + ν′′r−1 cos ηV ′′V ′]

Rayleigh → Love −is′′
φsr Ẇ ′′U̇ ′ − iν′′r−1s′′

φsr cos ηW ′′V̇ ′

−ν′r−1s′′
φs′

θ (Ẇ ′′U ′ + ν′′r−1 cos ηW ′′V ′)
Love → Rayleigh −iν′′r−1sr s′′

θ sin ηV ′′Ẇ ′ + iν′′ν′r−2sr s′
θ sin ηU ′′W ′

−ν′′ν′r−2s′
θ s′′

θ sin ηV ′′W ′ − ν′′r−1s2
r sin ηU ′′Ẇ ′

Love → Love iν′′r−1s′′
φsr sin ηW ′′Ẇ ′ + ν′′ν′r−2s′

θ s′′
φ sin ηW ′′W ′

supplementary online material for this paper. In addition to the quantities already defined, the terms in Table 1 also depend on the scattering

angle, η, defined by the outgoing azimuth at the scattering point, ψ ′′, minus the incoming azimuth, ψ ′ (see Fig. 1). These expressions then

give us a means to define the kernels for use in an inversion. In the table, we also use the terms

sr = (ŝ · r̂ )

s ′
θ = (ŝ · θ̂′

)

s ′′
φ = (ŝ · φ̂′

)

s ′′
θ = (ŝ · θ̂′′

)

s ′′
φ = (ŝ · φ̂′′

)

A′ = sr U ′ − is ′
θ V ′

A′′ = sr U ′′ + is ′′
θ V ′′. (27)

The expressions for the scattered waveform δu derived here can be used directly to compute kernels for waveform inversion studies, as

follows in Section 3, or be applied to dispersion data using the relationship between the phase perturbation δφ and the perturbation (Zhou

et al. 2004):

δφ = Im

(
δu

u

)
,

and similar expressions for amplitude and arrival angle (see also Nolet 2008).

We note that the surface wave mode approach used in this study is comparable with a complete normal mode sum approach for periods

shorter than approximately 250 s. For shorter periods, the surface wave mode approach has advantages over normal modes in the application

of Born scattering, as coupling need only be considered within the relatively small number of surface wave modes at a specific frequency,

rather than across the entire set of normal modes.
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Figure 2. Subsets of scattering and total δμ/μ (A) and γ kernels (B) for the time point shown in the bottom seismogram (2800 s) during the fundamental

mode Rayleigh wave train recorded on the L component for slices at a depth of 150 km. A vertical symmetry axis is assumed for this calculation. The source

has the mechanism shown and is at a depth of 33 km, and the receiver is at a distance of 100◦. For each model parameter, Rayleigh to Rayleigh (RR), Rayleigh

to Love (RL), Love to Rayleigh (LR) and Love to Love (LL) scattering is shown, with the total summed contribution at the bottom. For each plot, the maximum

value for the colour scale is shown in parentheses.

3 K E R N E L C A L C U L AT I O N

The derived expressions in Table 1 and eq. (25) can be directly implemented and the kernels can then be examined in order to gain further

insight into the finite-frequency sensitivity of surface waveforms. For the following figures, kernel calculations were made for seismograms

bandpass filtered between 0.005 and 0.01 Hz (periods from 100 to 200 s), with cosine tapers with corners at 0.006 and 0.009 Hz. A complete

set of Love and Rayleigh surface wave modes at 128 frequencies up to 0.01667 Hz (60 s period) with phase velocities between 2.5 and

250 km s−1 were used for the calculations. These modes were calculated in a simplified version of PREM (Dziewonski & Anderson 1981),

with the crust and 220 km discontinuity removed, as in the numerical tests in Section 3.2. The seismograms are rotated so that its three

components are vertical (Z), and the horizontal components along (L) and perpendicular (T) to the great-circle path from source to receiver.

Analysing a waveform kernel for a time point within the fundamental mode Rayleigh wave train recorded on the L component through a model

with a vertical symmetry axis (Fig. 2) shows a clear connection to the relatively simple path-average approximation (Woodhouse & Dziewonski

1984), commonly used to model surface waves. This approximation assumes a surface wave can be modelled by the average structure along

the great-circle path between source and receiver. While such an approach does not require the calculation of a volumetric kernel, it can be

visualized as a constant valued averaging kernel along the infinitesimal path. The Rayleigh to Rayleigh scattering that dominates the sensitivity

within the fundamental mode Rayleigh wave approaches such a kernel, although there is some along-path pulsing which is a function of the

coupling with higher-mode Rayleigh energy (e.g. Zhou et al. 2004). The other scattering terms for this portion of the seismogram are much

smaller, but still illustrate some interesting physics. Note the asymmetry of the kernels, which is due to the source mechanism, with stronger

Rayleigh to Love scattering north of the source where the maximum of the Rayleigh source radiation occurs, while the Love to Rayleigh

and Love to Love terms are larger to the east, where the Love radiation maximum occurs. For this case, where the symmetry axis is vertical,

the γ kernels are the opposite sign of the δμ/μ kernels and are roughly twice the amplitude. We can gain some additional physical insight

into the significance of these kernels by considering the Christoffel matrix (δBjl Dahlen & Tromp 1998, p. 82), which has the property of
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Figure 3. Same as Fig. 2, but on the transverse component at a time point during the fundamental Love wave train (2275 s). Slices in this figure are shown at

a depth of 50 km.

having eigenvectors that define the polarity of elastic waves with eigenvalues related to the squared velocity of the particular elastic wave. It

is calculated by the expression

ρδBjl = δci jkl k̂i k̂k, (28)

where k̂ is the unit vector in the direction of propagation. We can substitute δc from eq. (1) in the above expression for the case of a vertical

symmetry axis. In this case, the eigenvalue for the principal axis perpendicular to k̂ in the vertical plane is perturbed by a value of (δμ −
2ρβ2γ )/ρ. If we convert this to a perturbation δVSV /VSV , we obtain 1

2
δμ/μ − γ , consistent with Fig. 2.

The δμ/μ kernel for a time point within the fundamental Love wave train (Fig. 3) is a little more complicated. It is dominated by the

Love to Love coupling, as might be expected, but there is more along path variation due to coupling with higher modes than in the case of the

fundamental Rayleigh wave. This is not surprising due to the smaller separation in terms of group velocity between the fundamental mode

and overtones of Love waves compared to Rayleigh waves. The γ kernels are much smaller in amplitude, and are actually dominated by

off-path contributions due to Rayleigh to Rayleigh scattering. Once again, we can explain this by using a Christoffel matrix calculation and

determining in this case the δVSH/VSH from the perturbation to the eigenvalue related to the principal axis perpendicular to k̂ in the horizontal

plane. For the case of horizontal propagation with a vertical symmetry axis, this is simply equal to 1
2
δμ/μ, and has no dependence on γ .

Finally for a time point during the Love overtones (Fig. 4), the δμ/μ kernels have even more along-path variation, as might be expected for

overtones, which can be considered as interference patterns of multiply free-surface reflected S phases, while the γ kernels still demonstrate

the importance of Rayleigh to Rayleigh and Rayleigh to Love scattering due to the stronger γ influence on VSV , and therefore, Rayleigh waves.

Examples of kernels for all five elastic parameters for the time points in Figs 2–4 are available in the online supplementary material.

3.1 Non-linearity of kernels

As discussed further in Section 4, the kernels for this parametrization lead to a non-linear inversion since the values of �X depend on the

orientation of the symmetry axis ŝ in the current model. We can examine how this non-linearity is expressed, by seeing how the kernels

discussed above change as we vary the orientation angles of the symmetry axis: θ s , the angle from vertical and φ s , the azimuthal orientation.
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Figure 4. Same as Fig. 3 at a time point during the Love overtones wave train (1500 s), also shown at a depth of 50 km.

We consider values of θ s of 0◦, 45◦ and 90◦ (vertical, intermediate and horizontal), and values of φ s of −45◦, 0◦ and 45◦, measured counter-

clockwise from south. For the source–receiver configuration in Figs 2–6, the path is oriented roughly southwest–northeast, although it varies

from more north–south near the source to more east–west near the receiver, which means the three φ s values are approximately parallel, 45◦

oblique, and perpendicular to the path.

For a γ kernel within the fundamental Rayleigh wave (Fig. 5), the kernel pattern is quite similar for all angles. If the axis of symmetry is

oriented parallel with the path, the kernel is effectively unchanged for all values of θ s , while the amplitude of the kernel is strongly reduced

for a horizontal axis with a southeast orientation, and the pattern becomes slightly more complicated as other forms of scattering besides

Rayleigh to Rayleigh become more important. Once again, this behaviour is consistent with predictions from a Christoffel matrix calculation,

which would predict no γ contribution to VSV for a horizontal axis perpendicular to the path. This variation of sensitivity as a function of

azimuth is also consistent with the theoretical expectation that Rayleigh wave sensitivity should be strongest for 2� terms (Smith & Dahlen

1973), where � is the path azimuth.

For Love waves, on the other hand, kernel amplitude depends strongly on the value of θ s (Fig. 6). As discussed before, the kernel is near

zero and quite complicated for a vertical axis, but the γ kernel amplitude increases strongly as θ s goes to horizontal. The pattern approaches

that of the δμ/μ kernel (Fig. 3), but at twice the amplitude and the opposite sign for all values of φ s . As for the Rayleigh waves, the azimuthal

dependence is as expected from a Christoffel calculation, for which the γ contribution to VSH is the same for paths parallel and perpendicular

to the symmetry axis. This is also consistent with the theoretical prediction that 2� terms should be small for Love waves (Smith & Dahlen

1973), but does not clearly demonstrate the 4� sensitivity predicted in that study.

3.2 Numerical validation

In order to ensure the accuracy of the derivations in Section 2, we performed a numerical validation of the five elastic kernels for a simple

test case (Fig. 7). For the test case we assumed a simple uniform perturbation in the whole mantle and evaluated the differential seismograms

with respect to seismograms in the initial reference model using a spectral element method approach which also includes coupling to a normal

mode solution for the core for computational efficiency (CSEM, Capdeville et al. 2002; Chaljub et al. 2003). The reference model for the
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Figure 5. Figure showing non-linear dependence of γ kernel for L component during fundamental Rayleigh wave train. The top panel shows the 150 km slice

for a vertical axis, as in Fig. 2. The middle panels show kernels for the same time point for the case of an axis dipping 45◦ from vertical (θ s = π/4) to the

southwest (left-hand panel), south (middle panel) and southeast (right-hand panel), φ s = −π/4, 0 and +π/4, respectively. The bottom panels show the same

azimuths of φ s for a horizontal axis θ s = π/2.

test case is the simplified version of PREM, as in the previous sections, which is used for numerical efficiency. As in the example kernel

calculations, all seismograms shown are bandpassed between 0.005 and 0.01 Hz (periods from 100 to 200 s), with cosine tapers with corners

at 0.006 and 0.009 Hz. Velocity seismograms shown in Fig. 7 are at a distance of 40◦ (4450 km), with both source and receivers located along

the equator. A source mechanism with a vertical dip-slip plane oriented 45◦ from the path azimuth was chosen so as to be away from both

maximums and nodes in the Love and Rayleigh wave radiation patterns.

When we compare the 1-D CSEM synthetics and the surface wave mode synthetics within the arrival window of the high amplitude

surface wave energy, they are in quite good agreement. However, there is visible amplitude mismatch in the ScS2 phase arriving just at

the end of the T component trace. This mismatch is progressively larger for higher multiple ScS phases (not shown). This is due to the

limitation of the surface wave approach, primarily due to the breakdown of the far field approximation to P(θ ) in eq. (9) for modes with

small wavenumber ν, as typical for near-vertical arriving body phases. This is an important limitation to be aware of when applying these

kernels to actual data, although it is somewhat exaggerated by this test, as compared to real data, due to the neglect of attenuation in this

test.

For the perturbed seismograms, we assumed a uniform symmetry axis orientation with θ s = π/4 and φ s = π/3. This orientation was

chosen so as to be oblique to the propagation direction and to validate the kernels for non-zero values of sr , s θ , and sφ . Uniform 0.5 per cent

perturbations throughout the mantle of δλ/λ, δμ/μ, ε, δ and γ are considered. As shown in Fig. 7, there is quite good agreement between

kernel predictions and numerical results for most cases. There is some mismatch noticeable for the ε and δ kernels on the T component,

and to a lesser extent on the L component. This mismatch occurs during the arrival of ScS, which is during the fundamental mode for this

distance in this reference model, and there is also a mismatch apparent in the differential traces at the very end of the displayed records

where ScS2 energy is arriving. Once again, this is a function of the breakdown of the surface wave mode approach when dealing with

near vertically arriving long period body wave phases. As this mismatch is greatest for the T component ε and δ kernels, which have a

relatively small impact on Love waves (note the amplification factors in Fig. 7), such kernels should be sufficiently accurate for inversion

purposes.
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Figure 6. Same as Fig. 5 for 50 km depth slices and for the T component of data during the fundamental Love wave train.

4 N O N - L I N E A R I N V E R S I O N S T R AT E G I E S

In terms of inversion strategies, we may choose to either simultaneously invert for isotropic perturbations or to fix the isotropic structure

and only invert for the three anisotropic parameters as well as the orientation of the symmetry axis. In the first case, we can simply also use

the scattering coefficients due to perturbations in λ and μ, or alternatively P and S velocity (α and β) (e.g. Zhou et al. 2006). In the second

case the δλ and δμ terms are determined by the combination of ε, δ and γ and the definition of the isotropic average. If we choose the

Voigt average, which is a logical choice for a parametrization based on an elastic stiffness tensor, we obtain additional scattering coefficients

for the anisotropic parameters (Appendix B). Alternatively, we can choose to simply define the isotropic velocity by a fixed δλ and δμ in

eq. (1) (e.g. Calvet et al. 2006). This is advantageous in the sense that it does not introduce any additional terms for the anisotropic scattering

coefficients that would act to correlate the anisotropic kernels with the isotropic kernels. However, it is equivalent to fixing the values of C11

and C66, which relate to elastic properties measured perpendicular to the symmetry axis, rather than fixing some average over all directions,

such as the Voigt average, which may be physically more desirable.

It may not be intuitively obvious from examination of eq. (1) why the choice of the definition of the isotropic average matters or why

perturbing only ε, δ and γ could affect the isotropic average velocity. It does, however, matter because the expression in eq. (1) defines δλ

and δμ relative to specific C IJ (C 66 for δμ and and C 11 − 2C 66 for δλ). This means that perturbing, for example, ε, while holding δλ and

δμ to 0, would fix the P velocity along one axis perpendicular to the symmetry axis (related to C11) to the original isotropic value, while

perturbing it in all other directions. In general, most definitions of an isotropic average which measure elastic properties along other axes

would then be changed. For mathematical completeness, we need to add in δλ and δμ terms if we really want the Voigt average velocities fixed

(Appendix B). For a different choice of isotropic average (e.g. Reuss or Voigt-Reuss-Hill), we would require different δλ and δμ terms to hold

the desired isotropic average fixed.

Due to the inclusion of the orientation of the symmetry axis in the expressions for �X , the kernels defined in this approach are non-linear

in the sense that they depend on the model parameter ŝ. We can of course proceed to invert in an iterative fashion for the isotropic and

anisotropic perturbations and then for the orientation angles of the symmetry axis, θ s and φ s , using the expressions

∂ui

∂θs
= ε

(
∂Kε

∂s j

) (
∂s j

∂θs

)
+ δ

(
∂Kδ

∂s j

) (
∂s j

∂θs

)
+ γ

(
∂Kγ

∂s j

) (
∂s j

∂θs

)
(29)
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1d traces

Z

δλ/λ (X100) δμ/μ (X4) ε (X6) δ (X6) γ (X3)

L

T

Figure 7. Left-hand column shows comparison of SEM calculated velocity traces (solid black) and surface wave mode sum (dashed red) for vertical (Z, top),

as well as horizontal component along (L, middle) and perpendicular to the great-circle path (T , bottom), scaled to the same peak to peak amplitude. The

following columns show differential seismograms (perturbed minus reference) due to a uniform 0.5 per cent mantle perturbation of δλ/λ, δμ/μ, ε, δ, and γ

from SEM calculation (solid black) and kernel prediction (dashed red). Each column is multiplied by the factor specified in parentheses relative to the 1-D

traces in the left column. All traces shown are from 200 to 1900 s.

∂ui

∂φs
= ε

(
∂Kε

∂s j

) (
∂s j

∂φs

)
+ δ

(
∂Kδ

∂s j

) (
∂s j

∂θs

)
+ γ

(
∂Kγ

∂s j

) (
∂s j

∂φs

)
, (30)

where s j is an implied summation of the components of ŝ in the r̂ , θ̂ and φ̂ directions. Note that δλ and δμ terms do not enter the expression,

as these kernels do not depend on ŝ. The partial derivatives of the kernels, KX , with respect to the components of ŝ can be evaluated directly

from the expressions in Table 1, using the relations

s ′
θ = cos ψ ′sθ + sin ψ ′sφ (31)

s ′
φ = − sin ψ ′sθ + cos ψ ′sφ, (32)

where ψ ′ is the azimuth of the incoming wave measured counter-clockwise from south (Fig. 1). The same expressions hold for s ′′
θ and s ′′

φ by

replacing all the accents. The partial derivatives of the components of ŝ with respect to the orientation angles are

∂sr

∂θs
= − sin θs

∂sr

∂φs
= 0

∂sθ

∂θs
= cos θs cos φs

∂sθ

∂φs
= − sin θs sin φs

∂sφ

∂θs
= cos θs sin φs

∂sφ

∂φs
= sin θs cos φs . (33)

However, like all non-linear inversions, this strategy may fail if the starting model is not sufficiently close to the true model. Its also important

to repeat that the non-linearity of the problem, and the iterative approach, proposed, only accounts for the dependence of the kernels upon the

orientation of the axis in the previous model iteration. The surface wave mode calculation, however, is only performed in the 1-D reference
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model. This is not a fully non-linear inversion, in which all kernels are iteratively updated to reflect the 3-D model, which would require a

computationally expensive numerical calculation.

We may also wish to reduce the number of parameters using scaling relationships. Most surface wave-based shear velocity models choose

to scale perturbations in P velocity (to which the surface waves have less sensitivity) to those in S velocity, and there is ample empirical evidence

for the choice for such scaling. It is less obvious how to go about scaling anisotropic parameters. There is evidence for scaling of anisotropic

ratios in samples taken of natural peridotites (Montagner & Anderson 1989), and these ratios have been used in previous anisotropic global

inversions (Panning & Romanowicz 2006). The problem with this approach is that it is difficult to know if the samples are representative of

the mantle in general. Another option is to predict scaling based on geodynamic flow calculations and mineral physics based deformation

mechanisms (Becker et al. 2006), which show good linear correlation between ε, δ and γ , as well as supporting the choice of using hexagonal

symmetry to represent most of the mantle anisotropy. This suggests a parametrization for modelling surface wave and splitting data using just

μ, or V S to more closely match the actual sensitivity of the data, as well as γ and the orientation angles of the symmetry axis, θ s and φ s .

Another important consideration for such a non-linear inversion is computational efficiency. As derived here, an iterative inversion would

require the relatively time-consuming evaluation of the volume integral in eq. (26) after each update of the orientation of the symmetry axis.

However, as discussed in Appendix A, we can limit the evaluation of this integral to one time in the reference model for the 21 independent

elastic coefficients, C IJ , and then we can assemble the desired ε, δ and γ kernels for each updated symmetry axis orientation as linear

combinations of the C IJ kernels.

5 L I N E A R I N V E R S I O N S T R AT E G I E S

With this in mind, a more desirable strategy may be to define an approximate linear inversion to obtain an adequate starting point for the

non-linear inversion. There are many previous studies that define a series of linear kernels that represent the sensitivity of surface waves to a

general anisotropic model as the sum of terms related to a radially anisotropic model (hexagonal symmetry with a vertical axis of symmetry)

as well as other terms related to sinusoidal 2� and 4� dependence, where � is an angle in the θ̂ − φ̂ plane between the path azimuth and an

axis of the coordinate system (e.g. Montagner & Nataf 1986; Sieminski et al. 2007a). In the full expressions, this in general leads to a large

number of linear parameters [13 in the case of Montagner & Nataf (1986)], although in practice most studies have neglected the 4� terms, and

only considered the radial anisotropy terms and two terms (G c and G s) related to the cos 2� and sin 2� terms, respectively (e.g. Simons et al.
2002). One potential approach then would be to use these terms to invert for the best-fitting combination of the strength of radial anisotropy

and the strength and orientation of the 2� anisotropy. This then could be used to define a best-fitting symmetry axis by considering the linear

radial ansiotropy and 2� terms as the projections of the symmetry axis on the vertical and horizontal axes, respectively. This approximate

symmetry could then be used as a starting model for an iterative non-linear inversion.

For convenience, we also derive expressions for the surface wave sensitivity kernels for the cases of fixed vertical or horizontal symmetry

axis (Appendices C and D) using the parametrization defined by eq. (1). As expected, the case of a horizontal axis of symmetry can be defined

by a linear dependence on azimuthally independent terms and the sinusoids of 2� and 4�. However, there are complications inherent in using

the path azimuth, �, in the definition of the kernels in a finite-frequency Born scattering formalism, where structure off the geometric path

between source and receiver is taken into account assuming a scattering which changes the azimuth of energy propagation. For this reason,

we instead choose to use the angle φ s in our derivations in Appendix D, which defines the azimuthal orientation of the anisotropic symmetry

axis, rather than the path azimuth. Of course an azimuthal dependence that depends on a linear combination of sin 2� and cos 2� can be

equivalently represented by a different linear combination of sin 2φ s and cos 2φ s , and likewise for 4� terms. Using these expressions, we

could choose to linearly invert for a model that is simply the sum of sensitivity to a vertical axis of symmetry and a horizontal axis of symmetry.

Using the same scaling relationships as above, this would reduce us to one isotropic parameter (e.g. V S), plus 6 anisotropic parameters (γ v ,

from the vertical symmetry axis, plus five terms from the horizontal symmetry axis, relating to azimuthally independent terms plus the sines

and cosines of 2φ s and 4φ s). In comparison with the non-linear approach, this neglects all terms which contain both sr as well as s θ or sφ .

Also the number of parameters is likely still too large to reasonably resolve. However, as in previous studies, we can choose to only model

the 2φ s sensitivity of the horizontal medium, leaving us with a total of three anisotropic parameters (e.g. γ v , γ c and γ s , which relate to the

vertical axis, cos 2φ s and sin 2φ s terms, respectively). Future experiments with synthetic as well as real data will be necessary to resolve

whether such an approach which neglects many terms is sufficient to develop a close enough starting model for the non-linear inversion for

strength and orientation of anisotropy, which would include all those terms.

6 D I S C U S S I O N A N D C O N C L U S I O N S

The compact sensitivity kernels derived in this study offer a number of distinct advantages for the inversion of surface wave data in terms of

the most important—and resolvable—anisotropic characteristics of the Earth. The model parametrization is reduced to five elastic parameters

and the direction of the symmetry axis. If one seeks only an anisotropic perturbation on top of a first inversion attempt for an isotropic model,

the number of elastic parameters is reduced to the remaining three anisotropic parameters ε, γ and δ.

The number of anisotropic parameters can be further reduced (to one) through the predicted and observed correlations between ε, γ and

δ (Montagner & Anderson 1989; Becker et al. 2006). Parameter reduction does not need to be obtained by throwing out large numbers of

parameters assumed to generally have small amplitudes in the real Earth, or little influence on most data, which may not always be justified
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when considering the finite-frequency sensitivity of the data (e.g. Sieminski et al. 2007a,b). Also, this parametrization gives great latitude for

incorporating other a priori information about the expected anisotropy, such as constraining γ to be positive or negative, corresponding to

the two families of fabrics identified in Becker et al. (2006), or constraining the axis to be horizontal or vertical.

Finally, this approach gives us a consistent theoretical framework for combining surface wave and SKS splitting data. These kernels and

two proposed approaches for modelling shear splitting intensity (Chevrot 2006; Long et al. 2008) are based on equivalent formulations of

the elastic perturbation and allow for the calculation of 3-D finite-frequency kernels. Such data sets have already shown great promise when

combined in modelling efforts (Marone & Romanowicz 2007). Using finite-frequency kernels for both data sets in a consistent theoretical

framework should improve the modelling, and when combined with appropriate error estimates should greatly simplify the process of relative

weighting of the different data types.

The approach, however, comes with a possible disadvantage, due to the non-linearity of the kernels with respect to orientation of

the symmetry axis. While the examples shown in Figs 5 and 6 indicate some stability of kernel patterns, the amplitudes can vary greatly

depending on orientation. If there is not adequate data coverage, there could certainly be significant tradeoffs for example between strength

of anisotropy and axis orientation. However, the differences in these tradeoffs between Love and Rayleigh waves, and for different azimuths

of Rayleigh wave propagation suggest that such difficulties can be overcome with adequate data. Shear splitting measurements provide yet

another complementary constraint. However, any non-linear inversion has the potential to be strongly dependent on starting model. This

suggests that any approach can benefit from considering several starting models. Deriving these starting models from both linearized seismic

inversion as well as families of geodynamic flow models would seem to be a hopeful avenue for constraining model stability and confidence.

Further tests with both synthetic and real data will be necessary to determine what can be gained by this approach.

The models of anisotropic seismic velocity structure, in particular the magnitude of anisotropy inferred and the direction of the symmetry

axis, are important for the understanding of dynamic processes in the mantle. By reducing the parameter space to a small number of parameters

using empirical correlations, we bring the woefully underdetermined problem for full anisotropy back to a more feasible inverse problem while

incorporating prior knowledge about the likely nature of anisotropy. By formulating the problem using a finite-frequency approach based on

the Born approximation, we enhance resolvability by making use of the frequency-dependent width of the sensitivity. Chevrot & Zhao (2007)

point out that such enhanced resolution is only obtained if the kernels are sampled sufficiently densely, which makes the computation more

expensive, but not out of reach of a moderate Beowulf cluster. We provide source code for the computation of the kernels in the electronic

Appendix.

Application of the theoretical work presented in this paper should show how difficult it is to overcome the non-linearity of the kernels,

but this is reserved for future work. In this paper we proposed a number of inversion strategies that may allow for stable results, as well as

practical approaches to reduce the number of parameters.
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A P P E N D I X A : P R A C T I C A L C O N S I D E R AT I O N S F O R N O N - L I N E A R I N V E R S I O N S

Aside from the cases of fixed symmetry axis discussed in Appendices C and D, all of the above expressions are non-linear because the

sensitivity to perturbations in ε, δ and γ depend upon the orientation of the symmetry axis ŝ. However, the calculation of the scattering

terms over the whole scattering volume can be a computationally expensive step that would have to be repeated after each perturbation of

the symmetry axis in the 3-D model, even though the radial eigenfunctions U , V and W would still be defined in the spherically symmetric

reference model. This is a computationally undesirable route for the non-linear inversion approaches, as a non-linear inversion will almost

certainly take multiple iterations to converge.

We can, however, make a non-linear inversion for the anisotropic parameters from eq. (1) and symmetry axis orientation more feasible,

by defining the kernels as linear combinations of kernels which only need to be calculated once. A reasonable choice is to initially calculate

the sensitivity to perturbations to the 21 independent coefficients of the symmetric Voigt matrix C IJ , where I and J are indices that vary from

1 to 6 which represent two indices in the fourth order elastic tensor, and can be defined in spherical geometry as

1 = θθ

2 = φφ

3 = rr

4 = φr

5 = θr

6 = θφ. (A1)
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Once we define the desired kernels (e.g. K ε , K δ and K γ ) as a linear combination of the kernels with respect to CIJ , KIJ , we can speed up the

inversion process by only updating the coefficients of that linear combination after each iteration.

Using eq. (1), we can define relationships between the perturbed δC IJ and the parameters δλ, δμ, ε, δ and γ for a given symmetry axis ŝ,

δC11 = δλ + 2δμ + 2ρα2ε
(
s4
θ − 2s2

θ

) + ρα2δ
(
s2
θ − 2s4

θ

)
(A2)

δC22 = δλ + 2δμ + 2ρα2ε
(
s4
φ − 2s2

φ

) + ρα2δ
(
s2
φ − 2s4

φ

)
(A3)

δC33 = δλ + 2δμ + 2ρα2ε
(
s4

r − 2s2
r

) + ρα2δ
(
s2

r − 2s4
r

)
(A4)

δC44 = δμ + 2ρα2ε
(
s2
φs2

r

) − 2ρα2δ
(
s2
φs2

r

) − 2ρβ2γ
(
s2
φ + s2

r

)
(A5)

δC55 = δμ + 2ρα2ε
(
s2
θ s2

r

) − 2ρα2δ
(
s2
θ s2

r

) − 2ρβ2γ
(
s2
θ + s2

r

)
(A6)

δC66 = δμ + 2ρα2ε
(
s2
θ s2

φ

) − 2ρα2δ
(
s2
θ s2

φ

) − 2ρβ2γ
(
s2
θ + s2

φ

)
(A7)

δC12 = δλ + 2ρα2ε
(
s2
θ s2

φ − s2
θ − s2

φ

) + ρα2δ
(
s2
θ + s2

φ − 2s2
θ s2

φ

) + 4ρβ2γ
(
s2
θ + s2

φ

)
(A8)

δC13 = δλ + 2ρα2ε
(
s2
θ s2

r − s2
θ − s2

r

) + ρα2δ
(
s2
θ + s2

r − 2s2
θ s2

r

) + 4ρβ2γ
(
s2
θ + s2

r

)
(A9)

δC14 = 2ρα2ε
(
s2
θ sφsr − sφsr

) + ρα2δ
(
sφsr − 2s2

θ sφsr

) + 4ρβ2γ sφsr (A10)

δC15 = 2ρα2ε
(
s3
θ sr − sθ sr

) + ρα2δ
(
sθ sr − 2s3

θ sr

)
(A11)

δC16 = 2ρα2ε
(
s3
θ sφ − sθ sφ) + ρα2δ

(
sθ sφ − 2s3

θ sφ

)
(A12)

δC23 = δλ + 2ρα2ε
(
s2
φs2

r − s2
φ − s2

r ) + ρα2δ
(
s2
φ + s2

r − 2s2
φs2

r

) + 4ρβ2γ
(
s2
φ + s2

r

)
(A13)

δC24 = 2ρα2ε
(
s3
φsr − sφsr

) + ρα2δ
(
sφsr − 2s3

φsr

)
(A14)

δC25 = 2ρα2ε
(
s2
φsθ sr − sθ sr

) + ρα2δ
(
sθ sr − 2s2

φsθ sr

) + 4ρβ2γ sθ sr (A15)

δC26 = 2ρα2ε
(
s3
φsθ − sφsθ

) + ρα2δ
(
sφsθ − 2s3

φsθ

)
(A16)

δC34 = 2ρα2ε
(
s3

r sφ − sr sφ

) + ρα2δ
(
sr sφ − 2s3

r sφ

)
(A17)

δC35 = 2ρα2ε
(
s3

r sθ − sr sθ

) + ρα2δ
(
sr sθ − 2s3

r sθ

)
(A18)

δC36 = 2ρα2ε
(
s2

r sθ sφ − sθ sφ

) + ρα2δ
(
sθ sφ − 2s2

r sθ sφ

) + 4ρβ2γ sθ sφ (A19)

δC45 = 2ρα2εs2
r sθ sφ − 2ρα2δs2

r sθ sφ − 4ρβ2γ sθ sφ (A20)

δC46 = 2ρα2εs2
φsθ sr − 2ρα2δs2

φsθ sr − 4ρβ2γ sθ sr (A21)

δC56 = 2ρα2εs2
θ sφsr − 2ρα2δs2

θ sφsr − 4ρβ2γ sφsr . (A22)

Eqs (A2)–(A22) are then all of the form

δCI J = c(δλ)
I J δλ + c(δμ)

I J δμ + c(ε)
I J ε + c(δ)

I J δ + c(γ )
I J γ. (A23)

For example, c(ε)
11 is defined as 2 ρα2 (s4

θ − 2s2
θ ) from eq. (A2).

A local structural perturbation affects the first order scattered wavefield through the integrand
∑

I J K I J δCI J , where K IJ is the sensitivity

kernel for perturbations to CIJ . We can then equivalently write∑
I J

K I J δCI J =
∑

I J

K I J

[
c(δλ)

I J δλ + c(δμ)
I J δμ + c(ε)

I J ε + c(δ)
I J δ + c(γ )

I J γ
]

(A24)

= Kδλδλ + Kδμδμ + Kεε + Kδδ + Kεδ. (A25)

Equating like terms leads to the expression

Kδλ,δμ,ε,δ,γ =
∑

I J

c(δλ,δμ,ε,δ,γ )
I J K I J , (A26)

with the cIJ defined in eqs (A2)–(A22). This then defines the coefficients that will need to be updated after each iteration of the non-linear

inversion for anisotropic parameters and symmetry orientation.

To determine the K IJ in eq. (A26), we need to define the scattering coefficients �δCI J as in eq. (18), and these explicit expressions are

derived and tabulated in the supplementary material.
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A P P E N D I X B : F I X E D I S O T RO P I C M O D E L

If an iterative approach is desired where the isotropic structure is fixed and we invert for the anisotropic parameters, δλ and δμ can then

be considered only a function of ε, δ and γ . Given a definition of the isotropic average of an anisotropic structure, this then defines extra

scattering terms for ε, δ and γ .

With an arbitrarily oriented hexagonally symmetric material, we can locally define an orthogonal coordinate system with the x3 axis

along the axis of symmetry, as used to define the parameters in eqs (2)–(6). With that choice of local coordinate system, we can define the

Voigt average shear and bulk modulus (Babuska & Cara 1991, p. 190) as

μV = C11 + C33 − 2C13 + 6C44 + 5C66

15
(B1)

κV = 4C11 + C33 + 4C13 − 4C66

9
, (B2)

or, equivalently, we can use the Lamé parameters with μV defined as above and

λV = κV − 2

3
μV = 6C11 + C33 + 8C13 − 4C44 − 10C66

15
. (B3)

As in the definitions of terms in eq. (1), this particular coordinate system need only be defined locally, and the expressions for the isotropic

average are correct for arbitrary orientation of the symmetry axis.

We can then express the Voigt average λV and μV in terms of λ and μ in the reference model, as well as the perturbations δλ, δμ, ε, δ

and γ using the definitions in eqs (2)–(6) as

μV = μ + δμ + 2

15
(λ + 2μ)(ε − δ) − 4

3
μγ (B4)

λV = λ + δλ − 6

5
(λ + 2μ)ε + 8

15
(λ + 2μ)δ + 8

3
μγ. (B5)

These expressions clearly show that even if we constrain δλ and δμ to be zero during the inversion, the isotropic velocity structure is

still perturbed by non-zero anisotropic parameters. If we fix μV and λV to be constant during the inversion, this defines δμ and δλ as

δμ = 4

3
μγ − 2

15
(λ + 2μ)(ε − δ

)
(B6)

δλ = 6

5
(λ + 2μ)ε − 8

15
(λ + 2μ)δ − 8

3
μγ. (B7)

If these are substituted into the scattering terms for δλ and δμ, we obtain two additional scattering terms for ε, δ and γ .

For ε, these terms are

�(δλ)
ε = 6

5
(λ + 2μ)�δλ (B8)

�(δμ)
ε = − 2

15
(λ + 2μ)�δμ. (B9)

For δ, we have

�
(δλ)
δ = − 8

15
(λ + 2μ)�δλ (B10)

�
(δμ)
δ = 2

15
(λ + 2μ)�δμ. (B11)

For γ , we have

�(δλ)
γ = −8

3
μ�δλ (B12)

�(δμ)
γ = 4

3
μ�δμ. (B13)

A P P E N D I X C : V E RT I C A L S Y M M E T RY A X I S

It is useful to consider the scattering matrix terms for some end member cases, as these may be desirable in order to set up a linear inversion

to obtain a best-fitting starting model prior to a non-linear inversion for orientation of the axis of symmetry and strength of anisotropy.

The easiest case to derive is the vertical axis of symmetry, commonly referred to as Vertical Transverse Isotropy (VTI) or radial anisotropy.

In this case, the inner products with the orientation vector ŝ are defined such that sr is 1 and all other inner products are zero.

For ε, only the Rayleigh to Rayleigh scattering terms are non-zero, and are defined by

�(1)
ε = U̇ ′′U̇ ′ (C1)
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�(2)
ε = −(

U̇ ′′ − ν ′′r−1V ′′)U̇ ′ (C2)

�(3)
ε = −U̇ ′′(U̇ ′ − ν ′r−1V ′) (C3)

�ε = 2ρα2(�(1)
ε + �(2)

ε + �(3)
ε )

= 2ρα2[r−1(ν ′′V ′′U̇ ′ + ν ′U̇ ′′V ′) − U̇ ′′U̇ ′].
(C4)

Likewise for δ we obtain

�δ = −ρα2
(
2�(1)

ε + �(2)
ε + �(3)

ε

)
= −ρα2r−1(ν ′′V ′′U̇ ′ + ν ′U̇ ′′V ′).

(C5)

The terms �(3−6)
γ still include all forms of scattering with a vertical symmetry axis, and and so we can write the full scattering contribution

from γ as

�γ = 2ρβ2

(
2�(2)

ε + 2�(3)
ε −

6∑
i=3

�(i)
γ

)
(C6)

R → R : = 2ρβ2[2r−1(ν ′′V ′′U̇ ′ + ν ′U̇ ′′V ′) − 8U̇ ′′U̇ ′ − cos η(V̇ ′′V̇ ′ + ν ′′ν ′r−2U ′′U ′

+ r−1(ν ′′U ′′V̇ ′ + ν ′V̇ ′′U ′))]

R → L : = −2ρβ2[sin η(Ẇ ′′V̇ ′ + ν ′r−1Ẇ ′′U ′)]

L → R : = 2ρβ2[sin η(V̇ ′′Ẇ ′ + ν ′′r−1U ′′Ẇ ′)]

L → L : = −2ρβ2 cos ηẆ ′′Ẇ ′. (C7)

As in the case of isotropic perturbations, all of the coupling between Love and Rayleigh waves has a sin η dependence and would not be

predicted by ray theory along the great-circle path.

A P P E N D I X D : H O R I Z O N TA L S Y M M E T RY A X I S

The full derivations for these terms are available in the supplementary material. For these derivations, it is useful to define some additional

angles. φ s is the angle defining the orientation of the horizontal symmetry axis, measured counter-clockwise from south. For convenience of

expressions, we also define an angle ζ = ψ ′′ + ψ ′. These angles allow us to make simple trigonometric expressions to define the relevant

components of the orientation vector ŝ to derive the scattering terms.

D1 Scattering from ε

We can combine the derived terms for �ε and group them in terms of the azimuthal dependence. First we can write out the azimuthally

independent (�(0φs )
ε ) terms as

R → R : = ρα2

(
1

4
cos 2η − 3

2

)
ν ′′ν ′r−2V ′′V ′ + r−1(ν ′U̇ ′′V ′ + ν ′′V ′′U̇ ′)

R → L : = 1

4
ρα2 sin 2ην ′′ν ′r−2W ′′V ′

L → R : = 1

4
ρα2 sin 2ην ′′ν ′r−2V ′′W ′

L → L : = 1

4
ρα2 cos 2ην ′′ν ′r−2W ′′W ′. (D1)

The terms proportional to cos 2φs(�(cos 2φs )
ε ) can be written as

R → R : = cos 2φsρα2[r−1(cos 2ψ ′′ν ′′V ′′U̇ ′ + cos 2ψ ′ν ′U̇ ′′V ′)

−1

2
(cos 2ψ ′′ + cos 2ψ ′)ν ′′ν ′r−2V ′′V ′]

R → L : = cos 2φsρα2 sin 2ψ ′′
(

ν ′′r−1W ′′U̇ ′ − 1

2
ν ′′ν ′r−2W ′′V ′

)
L → R : = cos 2φsρα2 sin 2ψ ′

(
ν ′r−1U̇ ′′W ′ − 1

2
ν ′′ν ′r−2V ′′W ′

)
L → L : = 0. (D2)
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Likewise for �(sin 2φs )
ε , we have

R → R : = sin 2φsρα2[r−1(sin 2ψ ′′ν ′′V ′′U̇ ′ + sin 2ψ ′ν ′U̇ ′′V ′)

−1

2
(sin 2ψ ′′ + sin 2ψ ′)ν ′′ν ′r−2V ′′V ′]

R → L : = sin 2φsρα2 cos 2ψ ′′
(

1

2
ν ′′ν ′r−2W ′′V ′ − ν ′′r−1W ′′U̇ ′

)
L → R : = sin 2φsρα2 cos 2ψ ′

(
1

2
ν ′′ν ′r−2V ′′W ′ − ν ′r−1U̇ ′′W ′

)
L → L : = 0. (D3)

For �(cos 4φs )
ε , we obtain

R → R : = 1

4
cos 4φs cos 2ζ ρα2ν ′′ν ′r−2V ′′V ′

R → L : = 1

4
cos 4φs sin 2ζ ρα2ν ′′ν ′r−2W ′′V ′

L → R : = 1

4
cos 4φs sin 2ζ ρα2ν ′′ν ′r−2V ′′W ′

L → L : = −1

4
cos 4φs cos 2ζ ρα2ν ′′ν ′r−2W ′′W ′. (D4)

Finally for the �(sin 4φs )
ε terms, we have

R → R : = 1

4
sin 4φs sin 2ζ ρα2ν ′′ν ′r−2V ′′V ′

R → L : = −1

4
sin 4φs cos 2ζ ρα2ν ′′ν ′r−2W ′′V ′

L → R : = −1

4
sin 4φs cos 2ζ ρα2ν ′′ν ′r−2V ′′W ′

L → L : = −1

4
sin 4φs sin 2ζ ρα2ν ′′ν ′r−2W ′′W ′. (D5)

D2 Scattering from δ

For �
(0φs )
δ , the azimuthally independent terms, we derive

R → R : = ρα2

(
1

2
− 1

4
cos 2η

)
ν ′′ν ′r−2V ′′V ′ − 1

2
r−1(ν ′U̇ ′′V ′ + ν ′′V ′′U̇ ′)

R → L : = −1

4
ρα2 sin 2ην ′′ν ′r−2W ′′V ′

L → R : = −1

4
ρα2 sin 2ην ′′ν ′r−2V ′′W ′

L → L : = −1

4
ρα2 cos 2ην ′′ν ′r−2W ′′W ′. (D6)

Note that these are all proportional but of opposite sign to the �(0φs )
ε terms, with the exception of the Rayleigh to Rayleigh scattering

term, which has different leading factors.

�
(cos 2φs )
δ can be written as

R → R : = −1

2
cos 2φsρα2r−1(cos 2ψ ′′ν ′′V ′′U̇ ′ + cos 2ψ ′ν ′U̇ ′′V ′)

R → L : = −1

2
cos 2φsρα2 sin 2ψ ′′ν ′′r−1W ′′U̇ ′

L → R : = −1

2
cos 2φsρα2 sin 2ψ ′ν ′r−1U̇ ′′W ′

L → L : = 0. (D7)

For �
(sin 2φs )
δ , we have

R → R : = −1

2
sin 2φsρα2r−1(sin 2ψ ′′ν ′′V ′′U̇ ′ + sin 2ψ ′ν ′U̇ ′′V ′)

R → L : = −1

2
sin 2φsρα2 cos 2ψ ′′ν ′′r−1W ′′U̇ ′

L → R : = −1

2
sin 2φsρα2 cos 2ψ ′ν ′r−1U̇ ′′W ′

L → L : = 0. (D8)
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Finally,

�
(cos 4φs )
δ = −�(cos 4φs )

ε (D9)

�
(sin 4φs )
δ = −�(sin 4φs )

ε . (D10)

D3 Scattering from γ

For the case of a horizontal symmetry axis for �γ , we can sum up all terms and once again group by φ s dependence. For �(0φs )
γ , the azimuthally

independent terms, we obtain

R → R : = ρβ2[2r−1(ν ′U̇ ′′V ′ + ν ′′V ′′U̇ ′) − cos ηr−1(ν ′V̇ ′′U ′ + ν ′′U ′′V̇ ′) − cos ην ′′ν ′r−2U ′′U ′

−4ν ′′ν ′r−2(1 + cos2 η)V ′′V ′ − cos ηV̇ ′′V̇ ′]

R → L : = −ρβ2[4ν ′′ν ′r−2 cos η sin ηW ′′V ′ + sin ηẆ ′′V̇ ′ + ν ′r−1 sin ηẆ ′′U ′]

L → R : = ρβ2[4ν ′′ν ′r−2 cos η sin ηV ′′W ′ + sin ηV̇ ′′Ẇ ′ + ν ′′r−1 sin ηU ′′Ẇ ′]

L → L : = ρβ2[ν ′′ν ′r−2(sin2 η + sin η − cos2 η − cos η)W ′′W ′ − cos ηẆ ′′Ẇ ′]. (D11)

For �(cos 2φs )
γ , we obtain

R → R : = cos 2φsρβ2[2r−1(ν ′ cos 2ψ ′U̇ ′′V ′ + ν ′′ cos 2ψ ′′V ′′U̇ ′) − 4ν ′′ν ′r−2(cos 2ψ ′′ + cos 2ψ ′)V ′′V ′

− cos ζ (ν ′′ν ′r−2U ′′U ′ + ν ′′r−1U ′′V̇ ′ + ν ′r−1V̇ ′′U ′ + V̇ ′′V̇ ′)]

R → L : = cos 2φsρβ2[2 sin 2ψ ′′ν ′′r−1(W ′′U̇ ′ − 2ν ′r−1W ′′V ′) − sin ζ (ν ′r−1Ẇ ′′U ′ + Ẇ ′′V̇ ′)]

L → R : = cos 2φsρβ2[2 sin 2ψ ′ν ′r−1(U̇ ′′W ′ − 2ν ′′r−1V ′′W ′) − sin ζ (ν ′′r−1U ′′Ẇ ′ + V̇ ′′Ẇ ′)]

L → L : = cos 2φsρβ2 cos ζ Ẇ ′′Ẇ ′. (D12)

Likewise for �(sin 2φs )
γ , we derive

R → R : = sin 2φsρβ2[2r−1(ν ′ sin 2ψ ′U̇ ′′V ′ + ν ′′ sin 2ψ ′′V ′′U̇ ′) − 4ν ′′ν ′r−2(sin 2ψ ′′ + sin 2ψ ′)V ′′V ′

− sin ζ (ν ′′ν ′r−2U ′′U ′ + ν ′′r−1U ′′V̇ ′ + ν ′r−1V̇ ′′U ′ + V̇ ′′V̇ ′)]

R → L : = sin 2φsρβ2[2 cos 2ψ ′′ν ′′r−1(2ν ′r−1W ′′V ′ − W ′′U̇ ′) + cos ζ (ν ′r−1Ẇ ′′U ′ + Ẇ ′′V̇ ′)]

L → R : = sin 2φsρβ2[2 cos 2ψ ′ν ′r−1(2ν ′′r−1V ′′W ′ − U̇ ′′W ′) + cos ζ (ν ′′r−1U ′′Ẇ ′ + V̇ ′′Ẇ ′)]

L → L : = sin 2φsρβ2 sin ζ Ẇ ′′Ẇ ′. (D13)

For both the cos 2 φ s and sin 2 φ s terms, the V ′′V ′, V ′′W ′ and W ′′V ′, terms were further simplified using the trigonometric identities

2 cos ζ cos η = cos 2ψ ′′ + cos 2ψ ′

2 cos ζ sin η = sin 2ψ ′′ − sin 2ψ ′

2 sin ζ cos η = sin 2ψ ′′ + sin 2ψ ′

2 sin ζ sin η = cos 2ψ ′ − cos 2ψ ′′. (D14)

�(cos 4φs )
γ and �(sin 4φs )

γ are both zero.

S U P P L E M E N TA RY M AT E R I A L

The following supplementary material is available for this article:

Appendix S1. The appendix contains derivations of terms in the main body of the paper. It also contains a code fragment used in calculating

the scattering coefficient terms used for the example kernels and numerical validation of the main paper. Two additional figures showing the

kernels for all 5 elastic parameters are also presented (PDF format).

This material is available as part of the online article from: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-246X.2008.03833.x

(this link will take you to the article abstract).

Please note: Blackwell Publishing are not responsible for the content or functionality of any supplementary materials supplied by the authors.

Any queries (other than missing material) should be directed to the corresponding author for the article.

C© 2008 The Authors, GJI

Journal compilation C© 2008 RAS


